Specialty Chemicals Polymers

### Your vision. Our experience. The perfect chemistry.

KODAK Specialty Chemicals is a U.S.-based facility with decades of experience in custom synthesis with high-quality production serving diverse markets and a long, trusted history of providing scale to innovation, particularly with specialty polymers. D

## **Aqueous Polymers**

#### **Acrylic Polymers**

Developed for use in proprietary nanoscale pigment dispersions

Acrylic dispersant and stabilizers provide the necessary hydrophobic/hydrophilic balance to ensure pigment dispersion stability

Precise control of composition and molecular weight are required for the dynamic shear environment of inkjet printing

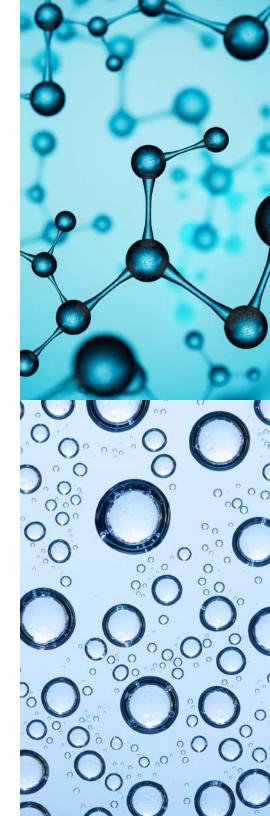
#### Polyurethane Dispersion Technology

Developed to enhance print durability of pigmented ink prints

Rigorous control of the polymerization process is necessary to meet the requirements of pigment dispersion compatibility and ink jetability

The polyurethane formulation ensures the formation of protective films improving abrasion and moisture resistance in printed images

# **Acrylic Polymers**


KODAK Acrylic Polymers perform a wide range of functions including colloid stabilizer and polymeric dispersant.

| Name  | Counter Ion | Aromatic     | Aliphatic | Co-Solvent | % Solids | Acid Number | Mw |
|-------|-------------|--------------|-----------|------------|----------|-------------|----|
| PDP10 | Potassium   | ~            |           | Dowanol PM | 18       | 215         | 8K |
| PDP66 | Potassium   | ~            |           | None       | 25       | 150         | 7К |
| PDP64 | Amine       | ~            | ~         | Dowanol PM | 18       | 215         | 9К |
| PDP07 | Potassium   | ~            | ~         | Dowanol PM | 18       | 215         | 9К |
| PDP83 | Potassium   | $\checkmark$ | ~         | Dowanol PM | 16       | 140         | 8K |

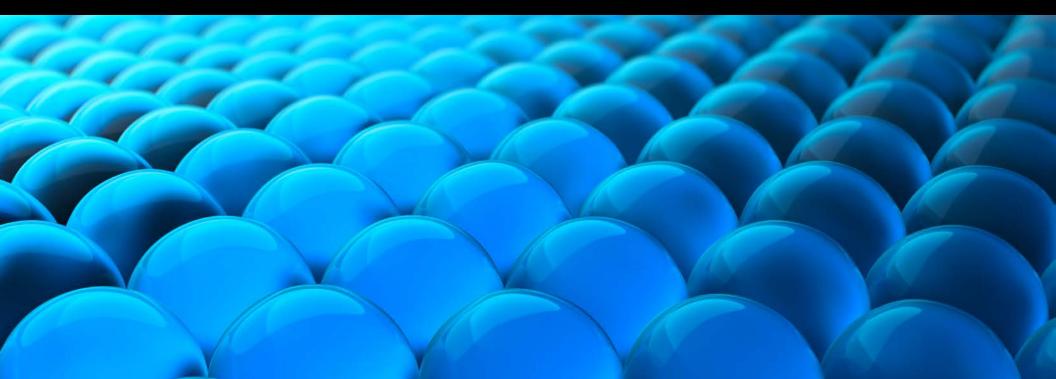
# **Durability Polymers**

KODAK Polyurethane Durability Polymers are superior for applications needing abrasion resistance and aesthetics including glossy, sealing and bonding overcoat.

| Name | Counter Ion | Aromatic     | % Solids | Acid Number | Mw  |
|------|-------------|--------------|----------|-------------|-----|
| PR25 | Potassium   | $\checkmark$ | 25       | 76          | 76  |
| PR37 | Potassium   | ~            | 25       | 76          | 76  |
| PR94 | Potassium   | $\checkmark$ | 25       | 100         | 100 |
| PR31 | Potassium   | ~            | 25       | 105         | 105 |



## **Polymeric Bead Technology**


#### Matting agents serve as spacers to prevent 'blocking' (undesired front-to-back adhesion)

#### Friction from matte beads prevents 'telescoping' of wide rolls

#### Excellent particle size control can be achieved for a range of 1 to 50 microns

#### Properties can be tuned to meet the applications needs

- Composition can be used to modify the beads glass transition temperature so that the bead is rigid or compliant at the application temperature
- Solubility can be designed to dissolve after they have performed their function
- Substrate compatibility can be enhanced by grafting materials onto the surface of the bead





### **Polymeric Beads**

|                                  | PR62  | PR41              |                         | PR762 | PR47  | PR18<br>PR39       | PR052 | PRO8<br>PRO54       | PR65 | PRO6 | PR93 |
|----------------------------------|-------|-------------------|-------------------------|-------|-------|--------------------|-------|---------------------|------|------|------|
| Product Name                     |       | PR52<br>PR53      | PR79                    |       |       |                    |       |                     |      |      |      |
|                                  |       |                   |                         |       |       |                    |       |                     |      |      |      |
| Monomer Composition              |       |                   |                         |       |       |                    |       |                     |      |      |      |
| Vinyl Toluene                    |       |                   |                         |       | 80%   |                    |       |                     |      |      |      |
| Divinyl Benzene 55 *             | 2%    |                   |                         |       | 20%   |                    |       |                     | 3%   | 20%  |      |
| Divinyl Benzene 80 **            |       |                   |                         |       |       | 100%               |       |                     |      |      |      |
| Methyl Methacrylate              | 98%   | 100%              | 100%                    |       |       |                    | 60%   |                     | 97%  |      | 90%  |
| Methacrylic Acid                 |       |                   |                         |       |       |                    | 40%   |                     |      |      |      |
| Ethylene Glycol Dimethacrylate   |       |                   |                         | 20%   |       |                    |       |                     |      |      | 10%  |
| Butyl Acrylate                   |       |                   |                         | 80%   |       |                    |       |                     |      | 40%  |      |
| Styrene                          |       |                   |                         |       |       |                    |       | 100%                |      | 40%  |      |
|                                  |       |                   |                         |       |       |                    |       |                     |      |      |      |
| Typical Median Particle Size, μm | 0.5   | 0.6<br>1.3<br>2.1 | 1.3                     | 1.6   | 1.3   | 3.5<br>1.7         | 1.5   | 6.9<br>6.7          | 9.6  | 8.6  | 3.7  |
| Classified                       | No    | No                | No                      | No    | No    | No                 | No    | No                  | Yes  | Yes  | No   |
| Typical Dispersant               | Water | Water             | Proprietary/<br>Aqueous | Water | Water | Dry or<br>methanol | Water | Water               | Dry  | Dry  | Dry  |
| Contains Silica                  | No    | No                | No                      | No    | No    | No                 | No    | With and<br>Without | Yes  | Yes  | Yes  |
| Contains Gelatin                 | No    | 2 wt%             | No                      | 2 wt% | 2 wt% | No                 | No    | No                  | No   | No   | No   |

\* Divinyl Benzene (55%) contains 45% ethylvinylbenzene

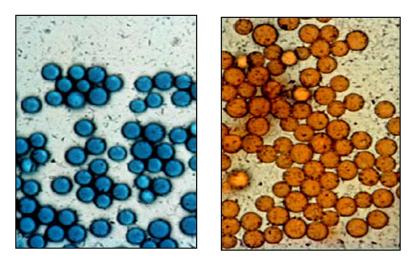
\*\* Divinyl Benzene (80%) contains 20% ethylvinylbenzene

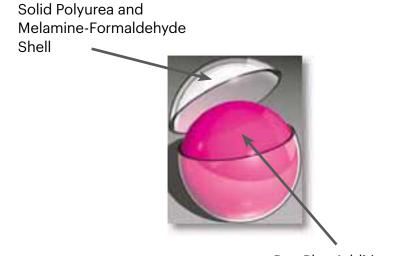


### **Custom Functional Polymers**

#### Kodak Polymer Process Competency:

Solution polymers Suspension polymers Emulsion polymers Polyurethane dispersions Precise control of composition and physical properties


#### **Classes of Polymers Include:**


Photopolymers - Novolaks, acrylic polymers Adhesion promoter polymers Coating aid and "carrier " polymers Rheology modifiers Mordant polymers

#### **These Polymers are Useful in Various Markets:**

Cosmetics Consumer products Printing Electronics

## **Encapsulation**





Dye Plus Additives

#### Encapsulated/Incorporated solid and liquid addenda

• Dyes, pigments, UV absorbers, lubricant

Novel microencapsulation process that is capable of generating microcapsules of narrow size distribution and of various sizes not by the amount of shear but by Kodak's proprietary formulation

For further information please visit kodak.com/go/specialtychemicals or contact us at specialtychemicals@kodak.com.

KODAK

© 2023 Kodak. Kodak and the Kodak logo are trademarks. Subject to technical change without notice. K-1021.23.06.01.EN.01